Difference sets in non-abelian groups of order 256
نویسندگان
چکیده
This paper considers the problem of determining which of the 56092 groups of order 256 contain (256, 120, 56, 64) difference sets. John Dillon at the National Security Agency communicated 724 groups which were still open as of August 2012. In this paper, we present a construction method for groups containing a normal subgroup isomorphic to Z4 × Z4 × Z2. This construction method was able to produce difference sets in 643 of the 649 unsolved groups with the correct normal subgroup. These constructions elimated approximately 90% of the open cases, leaving 81 remaining unsolved groups.
منابع مشابه
Enumeration of (16, 4, 16, 4) Relative Difference Sets
A complete enumeration of relative difference sets (RDS) with parameters (16, 4, 16, 4) in a group of order 64 with a normal subgroup N of order 4 is given. If N = Z4, three of the eleven abelian groups of order 64, and 23 of the 256 nonabelian groups of order 64 contain (16, 4, 16, 4) RDSs. If N = Z2 × Z2, six of the abelian groups and 194 of the non-abelian groups of order 64 contain (16, 4, ...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملNormal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
متن کاملConstruction of relative difference sets in p-groups
7 Davis, J.A., Construction of relative difference sets in p-groups, Discrete Mathematics 103 (1992) 7-15. Jungnickel (1982) and Elliot and Butson (1966) have shown that (pi+ , p, pi+•, pi) relative difference sets exist in the elementary abelian p-group case (p an odd prime) and many 2-groups for the case p = 2. This paper provides two new constructions of relative difference sets with these p...
متن کاملOn non-Abelian group difference sets
This paper is motivated by R. H. Bruck’s paper[3], in which he proved that the existence of cyclic projective plane of order n ≡ 1 (mod 3) implies that of a non-planar difference set of the same order by proving that such a cyclic projective plane admits a regular non-Abelian automorphism group using n as a multiplier. In this paper we will discuss in detail the possibility of using multipliers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013